procedure heapsort(a, count) is input: an unordered array a of length count (Build the heap in array a so that largest value is at the root) heapify(a, count) (The following loop maintains the invariants that a[0:end] is a heap and every element beyond end is greater than everything before it (so a[end:count] is in sorted order)) end ← count - 1 while end > 0 do (a[0] is the root and largest value. The swap moves it in front of the sorted elements.) swap(a[end], a[0]) (the heap size is reduced by one) end ← end - 1 (the swap ruined the heap property, so restore it) siftDown(a, 0, end)
(Put elements of 'a' in heap order, in-place) procedure heapify(a, count) is (start is assigned the index in 'a' of the last parent node) (the last element in a 0-based array is at index count-1; find the parent of that element) start ← iParent(count-1) while start ≥ 0 do (sift down the node at index 'start' to the proper place such that all nodes below the start index are in heap order) siftDown(a, start, count - 1) (go to the next parent node) start ← start - 1 (after sifting down the root all nodes/elements are in heap order) (Repair the heap whose root element is at index 'start', assuming the heaps rooted at its children are valid) procedure siftDown(a, start, end) is root ← start while iLeftChild(root) ≤ end do (While the root has at least one child) child ← iLeftChild(root) (Left child of root) swap ← root (Keeps track of child to swap with) if a[swap] < a[child] swap ← child (If there is a right child and that child is greater) if child+1 ≤ end and a[swap] < a[child+1] swap ← child + 1 if swap = root (The root holds the largest element. Since we assume the heaps rooted at the children are valid, this means that we are done.) return else swap(a[root], a[swap]) root ← swap (repeat to continue sifting down the child now)
No comments:
Post a Comment