Saturday, February 27, 2016

Heapsort Algorythm

procedure heapsort(a, count) is
    input: an unordered array a of length count
 
    (Build the heap in array a so that largest value is at the root)
    heapify(a, count)

    (The following loop maintains the invariants that a[0:end] is a heap and every element
     beyond end is greater than everything before it (so a[end:count] is in sorted order))
    end ← count - 1
    while end > 0 do
        (a[0] is the root and largest value. The swap moves it in front of the sorted elements.)
        swap(a[end], a[0])
        (the heap size is reduced by one)
        end ← end - 1
        (the swap ruined the heap property, so restore it)
        siftDown(a, 0, end)


(Put elements of 'a' in heap order, in-place)
procedure heapify(a, count) is
    (start is assigned the index in 'a' of the last parent node)
    (the last element in a 0-based array is at index count-1; find the parent of that element)
    start ← iParent(count-1)
    
    while start ≥ 0 do
        (sift down the node at index 'start' to the proper place such that all nodes below
         the start index are in heap order)
        siftDown(a, start, count - 1)
        (go to the next parent node)
        start ← start - 1
    (after sifting down the root all nodes/elements are in heap order)

(Repair the heap whose root element is at index 'start', assuming the heaps rooted at its children are valid)
procedure siftDown(a, start, end) is
    root ← start

    while iLeftChild(root) ≤ end do    (While the root has at least one child)
        child ← iLeftChild(root)   (Left child of root)
        swap ← root                (Keeps track of child to swap with)

        if a[swap] < a[child]
            swap ← child
        (If there is a right child and that child is greater)
        if child+1 ≤ end and a[swap] < a[child+1]
            swap ← child + 1
        if swap = root
            (The root holds the largest element. Since we assume the heaps rooted at the
             children are valid, this means that we are done.)
            return
        else
            swap(a[root], a[swap])
            root ← swap            (repeat to continue sifting down the child now)

Depth-first search - Wikipedia, the free encyclopedia

Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data structures. One starts at the root(selecting some arbitrary node as the root in the case of a graph) and explores as far as possible along each branch beforebacktracking.



A recursive implementation of DFS:[5]
1  procedure DFS(G,v):
2      label v as discovered
3      for all edges from v to w in G.adjacentEdges(v) do
4          if vertex w is not labeled as discovered then
5              recursively call DFS(G,w)
A non-recursive implementation of DFS:[6]
1  procedure DFS-iterative(G,v):
2      let S be a stack
3      S.push(v)
4      while S is not empty
5            v = S.pop()
6            if v is not labeled as discovered:
7                label v as discovered
8                for all edges from v to w in G.adjacentEdges(v) do
9                    S.push(w)